Thursday, October 24, 2019
Fermentatiom By Yeast :: essays research papers
Fermentation of glycine, water, sucrose, galactose, and glucose as induced by yeast. ABSTRACT This lab attempted to find the rate at which Carbon dioxide is produced when five different test solutions: glycine, sucrose, galactose, water, and glucose were separately mixed with a yeast solution to produce fermentation, a process cells undergo. Fermentation is a major way by which a living cell can obtain energy. By measuring the carbon dioxide released by the test solutions, it could be determined which food source allows a living cell to obtain energy. The focus of the research was to determine which test solution would release the Carbon Dioxide by-product the quickest, by the addition of the yeast solution. The best results came from galactose, which produced .170 ml/minute of carbon dioxide. Followed by glucose, this produced .014 ml/minute; finally, sucrose which produced .012ml/minute of Carbon Dioxide. The test solutions water and glycine did not release Carbon Dioxide because they were not a food source for yeast. The results suggest that sugars are very good energy sou rces for a cell where amino acid, Glycine, is not. INTRODUCTION Ã Ã Ã Ã Ã Fermentation is an anaerobic process in which fuel molecules are broken down to create pyruvate and ATP molecules (Alberts, 1998). Both pyruvate and ATP are major energy sources used by the cell to do a variety of things. For example, ATP is used in cell division to divide the chromosomes (Alberts, 1998). By taking a Carbon Dioxide, rich substance and mixing it with a yeast, solution fermentation will occur, and then it could be determined if it is a good energy-producer. In this study glacatose, sucrose, glycine, glucose, and water were used to indicate how fast fermentation occurred. The overall result shows that monosaccharides in particular galactose and glucose were the best energy source for a cell. Materials and Methods There were five test solutions used in this experiment, water being the control, which were mixed with a yeast solution to cause fermentation. A 1ml pipetman was used to measure 1 ml of each of the test solutions and placed them in separated test tubes. The 1 ml pipetman was then used to take 1ml of the yeast solution, and placed 1ml of yeast into the five test tubes all containing 1 ml of the test solutions. A 1ml graduated pipette was placed separately in each of the test tubes and extracted 1ml of the solutions into it. Once the mixture was in the pipette, someone from the group placed a piece of parafilm securely on the open end of the pipette and upon completion removed the top part of the graduated pipette.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.